Rfid Based Centralized Patient Monitoring System and Tracking Using Iot

R.Sarojini¹, D.Kalaiarasan², G.Sheeba³,
¹Assistant Professor, Department of ECE, Government College of Engineering - Srirangam
²Assistant Professor, Department of ECE, Government College of Engineering – Srirangam
³Assistant Professor, Department of EEE, Government College of Engineering - Srirangam
ramvlsi104@gmail.com, sheebabeng@gmail.com

Abstract: This paper presents endorsement on the use of Radio Frequency Identification in the health care industry. It is an appearing technology, which promises to prior the contemporary industrial practices in pursuing and object identification. This is great possibility for RFID systems to be used in the health care field in order to maximize patient security and responsibiliy, as well as maximum facility profitability. Many health documents to be cultivated in RFID by its unique ID number. RFID technology grants hospital to closely auditing the patient movements by utilizing temperature and heartbeat sensor. When the normal range is passed over, a message is sent through the GSM/GPS to the nearest hospital with its location. In this way, all the information are broadcast to the server by java. Hence, concerned doctor details, medicines, blood pressure, heart beat level, etc are the tracking and monitoring the patients information. Here, there is no chance to afford wrong prescription by the doctor. Thus utilizing this technology all the patient gets best security to their health.

Keywords: RFID, Arduino, GSM, IoT

INTRODUCTION:

Radio Frequency Identification (RFID) is a state of the art technology to identify products that uses electromagnetic fields attached to a tag. Generally, these tags are utilize for product tracking and identification. RFID in the medical field is to trace the location and monitor patients. In the future, it is expected that hospitals will explore to prevent by scanning patients as they get in and out of bed. Here the patient continuously controlled by the temperature and heartbeat sensor. Whenever its range is varied from normal range instantly the message will send to both the centralized server hospital with the location and the relative of the patient. That’s way an immediate treatment will be followed.

An Active Reader Passive Tag (ARPT) system has an active reader, which relays interrogator signals and also accepts replies from passive tags. An Active Reader Active Tag (ARAT) system utilize active tags with an interrogator signals from the active reader, which deeds like a passive tag but has a small battery to function the tag’s return reporting signal. RFID cards are utilized for tracking purposes. The RFID readers can be adapted with an additional
interface that converts the radio wave returned from the tag into a form that can be passed on to another system like computer or any programmable logic controller. It needs a very small capacity. Every time a card is read by a fixed RFID reader, the actual location of the patient and current date and time are registered into the centralized database. When, RFID tags memory can be obliterated and written more than 100,000 times. These tags can be recovered after high-temperature sterilization.

OBJECTIVES:

The main objectives are mentioned below:

- To reduce the carrying load of the treatment details and the records.
- To establish a centralized and distributed server and database where the information is shared between different servers.
- To provide assistance to patients at home when there is no one beside them.
- To also devote the relative of the patient and the nearest hospital so that they are there when needed.

EXISTING SYSTEM:

In previous days, speaking in the perspective of a patient the only thing that strikes first is that lots of treatment undergone, more health records to be maintained. To overwhelm, this inconvenience, this concept of financing a centralized information system and sharing has been proposed through RFID technology. By maximizing the importance of the supply chain through RFID technology, hospitals can get some benefits, such as reducing out-of-stocks, decreasing the lost, minimizing the time for searching inventory by the staff. RFID based systems are utilized to trace the blood bags to record and to reduce the risk of gathering the wrong type of blood.

WORKING PRINCIPLE:

The tracking section comprises the condition and the assistance given to fashion when he/she is in a closed environment (home) when nobody is around him/her. When the patient on the bed, he/she is continuously controlled by a temperature and heartbeat sensor. If the value of the temperature increases than the normal body temperature then a SMS is transmit to the close relative of the patient.
along with its location saying the message “TEMPERATURE HIGH”. But when the heartbeat increases than the normal range then a message is transmitted to the centralized server hospital with the location. Again if the next minute it remains high then the nearest hospital to the patient location is calculated and an information is sent to the server of that particular hospital and a SMS to the relative saying "PATIENT CRITICAL". In this way the ambulance enters the patient through the location gathered, receives the RFID tag and reaches the hospital for the treatment. If the patient is being taken to the ward the doctor with the RFID tag reader reads the previous details and treatments taken and the medications are cleared accordingly.

PROPOSED SYSTEM:

The monitoring section concerns the RFID tag is given by the hospital to every new patient.

This tag maintains a unique ID number as well as information, such as blood pressure, temperature, heartbeat, sugar level, treatment details, doctor attended and previous hospital visited etc., are updated at the end of details in the login. In case the patient goes to another hospital then the centralized server spreads the information so that the details recovered from the database are updated once again. So in this process the principle of carrying the records and files is totally eliminated. In hospitals who are utilizing RFID technology today, new
doctors can take immediate treatment to the patient with the help of centralized server database.

HARDWARE DESCRIPTION:

The most basic Radio Frequency Identification technology is made up of hardware components these components are RFID Reader, RFID tag. The components of the basic RFID tag are an integrated circuit (IC) The IC is culpable for monitoring the tag; much like a CPU controls a desktop computer. The IC controls what is broadcast from the tag, processes mandates received from the reader and administers any peripherals such as temperature and pressure sensors. RFID tags is responsible for acquiring and conveying data from and to the reader, and, in the case of passive type RFID tags, they collect the energy required to power the tag.

RFID TAG:

Nowadays, the patients who are given their own RFID embedded ID bracelet upon checking in hospital use RFID. This bracelet resides of unique patient ID number as well as other information. The tags have an identify of the object with which it is correlated. The tags also consist of an antenna and an electronic micro chip. The antenna is culpable for making communication betwixt the tag and reader.

RFID READER:

The main application of RFID reader to collect information from the tag. This reader can read through most anything except the handling material such as water and metal. The RFID reader emits a low power radio wave which is used to energize the tag so to pass any information that is contained on the chip. The readers can also be fitted with an extra interface.

ARDUINO MICROCONTROLLER:

RFID is a non-contact, automatic identification technology that utilizes radio signals to
detect, track, sort and identify a variety of objects without the need for direct contact or line-of-sight contact. This UNO is programmed with IDE software. It communicates with STK500 protocol.

FUTURE ENHANCEMENT:

In our paper we condensed on the people who are in a closed environment. In future, we would develop an application, which is very useful to the people. This RFID system afford assistance on the spot not delay on anyone. Here after minimizing the risk of losing their lives in open environment.

APPLICATION:

- Healthcare industry.

CONCLUSION:

In the healthcare industry, it contributes more advantages for example increase accuracy tasks, reduce human errors, develop patient’s safety and satisfaction with a help of centralized server by java programming. There is no doubt, in coming years, using of RFID will be requirement in healthcare industry. If it is utilized alone healthcare organizations will be challenged with numerous challenges. But if we integrate it with hospital information systems (HIS) and electronic health records (EHRs) and support it by clinical decision support systems (CDSS), the medical, medication and diagnosis errors will be reduced.

REFERENCES:

[4] “Privacy and Security Requirements for RFID Applications”, Received 5 April 2008; Revised 21 July 2009; Accepted 25 Aug. 2009. "RFID-based Information System for Patients and Medical Staff Identification and Tracking", Tudor Ioan CERLINCA, Cristina TURCU, Cornel TURCU and Marius CERLINCA

