Bayesian Estimation of the parameter of Ailamujia Distribution using different Loss functions

Fatima Bi, Afaq Ahmad

Research Scholar, Department of Mathematics, Department of Mathematical Sciences
Bhagwant University, Islamic University of Science & Technology
Ajmer, India, Kashmir, India
fathimaasheb@gmail.com, baderaafaq@gmail.com

Abstract— In this paper we proposed the Bayes estimation of the parameter of Ailamujia distribution. The estimators are obtained by using non-informative Jefferly’s prior and informative Gamma prior under squared error loss function, Entropy loss function and LINEX loss function. Finally a real life example is considered to compare the performance of these estimates under different loss functions by calculating posteriors risk using R Software.

Keywords: Ailamujia distribution, Bayesian estimation, Priors, Loss functions, R software.

1. INTRODUCTION

Statistical distributions are widely applied to describe real world phenomena. Sometimes typical and complicated situations arise in the field of Statistical analysis, as a result of which the already existing models does not fit much accurately to the complex data arising in such situations. The inferences about various lifetime distributions, such as exponential distribution, Weibull distribution, Pareto distribution and normal distribution, etc. have been studied a lot. In recent years, many new distributions are proposed for various engineering applications. Ailmujia is one of these distribution proposed by Lv et al. (2002). Pan et al. (2009) studied the interval estimation and hypothesis test of Ailamujia distribution based on small sample. Uzma et al. (2017) studied the weighted version Ailamujia distribution. The cumulative distribution function of Ailamujia distribution is given by

\[F(x; \theta, \alpha) = 1 - (1 + 2\theta x)^{-2\theta} \], \(x \geq 0, \theta > 0 \) \hspace{1cm} (1)

and the probability density function (pdf) corresponding to (1.1) is

\[f(x; \theta, \alpha) = 4\theta^2 e^{-2\theta x} \], \(x \geq 0, \theta > 0 \) \hspace{1cm} (2)

Our objective in this study is to find the Bayes estimators of the parameter of Ailamujia distribution using non-informative Jefferly’s prior and informative Gamma prior under squared error loss function, Entropy loss function and LINEX loss function. Finally a real life example is considered to compare the performance of these estimates under different loss functions by calculating posteriors risk using R Software.

2. MATERIAL AND METHODS

Recently Bayesian estimation method has established great consideration by most researchers. Bayesian analysis is an important approach to statistics, which formally seeks use of prior information and Bayes Theorem provides the formula for updating this prior information to get the posterior information.

In this paper we consider the Jeffery’s prior proposed by Al-Kutubi (2005) as:

\[g(\theta) \propto \frac{1}{\theta} \] \hspace{1cm} (3)

Where, \(g(\theta) \rightarrow \infty \) for the model (2), where, \(g(\theta) = \frac{1}{\theta} \) is a constant.

The second prior which we have used is gamma prior i.e

\[g(\theta) \propto \frac{\alpha^\theta}{\Gamma(\beta) \cdot \alpha \beta} \] \hspace{1cm} (4)

with the above priors, we use three different loss functions for the model (2), viz squared error loss function which is symmetric, and Entropy and LINEX loss function which are asymmetric loss functions.

A. Maximum Likelihood Estimation

Let \(x_1, x_2, \ldots, x_n \) be a random sample of size \(n \) from Ailamujia distribution, then the log likelihood function can be written as

\[\log L(\theta, \lambda) = n\log 4 + 2n\log \theta + \sum_{i=1}^{n} x_i - 2\theta \sum_{i=1}^{n} x_i \] \hspace{1cm} (5)

The ML estimator of is obtained by solving the equation

\[\frac{\partial \log L(\theta, \lambda)}{\partial \theta} = 0 \]

\[\Rightarrow \frac{2n}{\theta} - 2\sum_{i=1}^{n} x_i = 0 \Rightarrow \theta_{ML} = \frac{N}{\sum_{i=1}^{n} x_i} \]
3. BAYESIAN ESTIMATION OF AILAMUJIA DISTRIBUTION UNDER ASSUMPTION OF JEFFREY’S PRIOR

Consider n recorded values, \(x = (x_1, x_2, ..., x_n) \) having probability density function as

\[
f(x; \theta, \alpha) = 4x^2 \theta^2 e^{-2\theta x}
\]

We consider the prior distribution of \(\theta \) to be Jeffrey’s prior i.e. \(g(\theta) \propto \frac{1}{\theta} \)

The posterior distribution of \(\theta \) under the assumption of Jeffrey’s prior is given by

\[
\pi(\theta|x) \propto L(x|\theta) g(\theta)
\]

\[
= \frac{n}{e^{-2\theta \sum_{i=1}^{\infty} x_i}} - 2\theta \sum_{i=1}^{n} 1
\]

\(\Rightarrow \pi(\theta|x) = k \theta^{2n-1} e^{-2\theta \sum_{i=1}^{n} x_i} \)

where \(k \) is independent of \(\theta \).

And

\[
k^{-1} = \int_{0}^{\infty} \theta^{2n-1} e^{-2\theta \sum_{i=1}^{n} x_i} d\theta
\]

\(\Rightarrow k = \frac{\Gamma(2n)}{2 \sum_{i=1}^{n} x_i} \)

Hence posterior distribution of \(\theta \) is given by

\[
\pi(\theta|x) = \frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-2\theta \sum_{i=1}^{n} x_i}
\]

\[
\pi(\theta|x) = \frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta}
\]

Where \(t = \sum_{i=1}^{n} x_i \)

A. Estimator under squared error loss function

By using squared error loss function

\[
l(\hat{\theta}, \theta) = c (\theta - \hat{\theta})^2 \]

for some constant \(c \) the risk function is given by

\[
R(\theta, \theta) = \int_{0}^{\infty} \left(\frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right) \left(\frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right) d\theta
\]

\[
= \left[\frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right] \left[\frac{n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right] d\theta
\]

\[
= c t^{2n} \left[\frac{\theta^{2n} \Gamma(2n+2)}{\Gamma(2n+1)} - \theta^{2n} \frac{\Gamma(2n+1)}{\Gamma(2n+2)} \right]
\]

\[
= \frac{c t^{2n}}{\Gamma(2n+1)} \left[\frac{\theta^{2n} \Gamma(2n+2)}{\Gamma(2n+1)} - \theta^{2n} \frac{\Gamma(2n+1)}{\Gamma(2n+2)} \right]
\]

\[\hat{\theta} = \frac{n}{t} \]

Now solving \(\frac{\partial R(\theta, \theta)}{\partial \theta} = 0 \), we obtain the Baye’s estimator as

\[\hat{\theta} = \frac{n}{t}, \text{ where } t = \sum_{i=1}^{n} x_i \]

(7)

B. Estimator under Entropy loss function

Using entropy loss function

\[
L(\delta) = a [\delta - \log(\delta) - 1] \quad a > 0, \quad \delta = \frac{\theta}{\theta}
\]

the risk function is given by

\[
R(\theta, \theta) = \int_{0}^{\infty} \left[a [\delta - \log(\delta) - 1] \left(\frac{2n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right) \right] d\theta
\]

\[
= \frac{a t^{2n}}{\Gamma(2n)} \left[\frac{n}{\Gamma(2n+1)} + \frac{\Gamma(2n)}{\Gamma(2n+2)} \right]
\]

Now solving \(\frac{\partial R(\theta, \theta)}{\partial \theta} = 0 \), we obtain the Baye’s estimator as

\[\hat{\theta} = \frac{n-1}{\theta}, \text{ where } t = \sum_{i=1}^{n} x_i \]

(8)

C. Estimator under LINEX loss function

Using LINEX loss function

\[
l(\theta, \theta) = \exp \left\{ \left[n \left(\frac{\theta}{\theta} - 1 \right) \right] - 1 \right\}
\]

for some constant \(b \) the risk function is given by

\[
R(\theta, \theta) = \int_{0}^{\infty} \left[\exp \left\{ n \left(\frac{\theta}{\theta} - 1 \right) \right\} - 1 \right] \left(\frac{2n}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right) \right] d\theta
\]

\[
= \frac{\exp \left\{ n \left(\frac{t}{\theta} - 1 \right) \right\} - 1}{\Gamma(2n)} \theta^{2n-1} e^{-\theta} \right] d\theta
\]

Now solving \(\frac{\partial R(\theta, \theta)}{\partial \theta} = 0 \), we obtain the Baye’s estimator as

\[\hat{\theta} = \frac{1}{b + t} \]

(9)

4. BAYESIAN ESTIMATION OF AILAMUJIA DISTRIBUTION UNDER ASSUMPTION OF GAMMA PRIOR

Consider n recorded values, \(x = (x_1, x_2, ..., x_n) \) having probability density function as

\[
f(x; \theta, \alpha) = 4x^2 \theta^2 e^{-2\theta x}
\]

we consider the prior distribution of \(\theta \) to be Gamma prior i.e.

\[
g(\theta) \propto \frac{\alpha^\beta}{\Gamma(\beta)} \theta^{\alpha-1} e^{-\alpha \theta}
\]
The posterior distribution of θ under the assumption of Gamma prior is given by $\pi(\theta | x) \propto L(x | \theta) g(\theta)$

$$\Rightarrow \pi(\theta | x) \propto (4)^{n} \prod_{i=1}^{n} \frac{e^{-2\theta \sum_{i=1}^{n} x_{i}}}{\Gamma(2n+\beta)} \theta^{2n+\beta-1}$$

$$\Rightarrow \pi(\theta | x) \propto k \theta^{2n+\beta-1} e^{-2\theta \sum_{i=1}^{n} x_{i}}$$

where k is independent of θ and $k^{-1} = \int_{0}^{\infty} \theta^{2n+\beta-1} e^{-\theta} d\theta$.

Hence posterior distribution of θ is given by

$$\pi(\theta | x) = \int_{0}^{\infty} \theta^{2n+\beta-1} e^{-\theta} d\theta$$

$$\pi(\theta | x) = \frac{\Gamma(2n+\beta)}{(\alpha + 2 \sum_{i=1}^{n} x_{i})^{\alpha + 2 \sum_{i=1}^{n} x_{i}}} \theta^{n+\beta-1} e^{-\theta \alpha}$$

Where $t = 2 \sum_{i=1}^{n} x_{i}$

A. Estimator under squared error loss function

By using squared error loss function $l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^{2}$ for some constant c the risk function is given by

$$R(\hat{\theta}, \theta) = \mathbb{E}[l(\hat{\theta}, \theta)]$$

$$= \int_{0}^{\infty} (\hat{\theta} - \theta)^{2} \frac{\Gamma(2n+\beta)}{(\alpha + 2 \sum_{i=1}^{n} x_{i})^{\alpha + 2 \sum_{i=1}^{n} x_{i}}} \theta^{n+\beta-1} e^{-\theta \alpha} d\theta$$

$$= \frac{c (\alpha + t)^{2n+\beta}}{\Gamma(2n+\beta)} \frac{\Gamma(2n+\beta)}{(\alpha + t)^{\alpha + 2 \sum_{i=1}^{n} x_{i}}} \theta^{n+\beta-1} e^{-(\alpha + t) \theta} d\theta$$

$$= \frac{c (\alpha + t)^{2n+\beta}}{\Gamma(2n+\beta)} \frac{\Gamma(2n+\beta)}{(\alpha + t)^{\alpha + 2 \sum_{i=1}^{n} x_{i}}} \theta^{n+\beta-1} e^{-(\alpha + t) \theta} d\theta$$

Now solving $\frac{\partial R(\hat{\theta}, \theta)}{\partial \theta} = 0$, we obtain the Bayes estimator $\hat{\theta}_{GE} = \frac{2n + \beta - 1}{\alpha + t}$ where $t = 2 \sum_{i=1}^{n} x_{i}$

B. Estimator under Entropy loss function

By using entropy loss function

$$\hat{\gamma}(\theta, \theta) = \alpha \log(\hat{\theta}) - \theta$$

the risk function is given by

$$R(\hat{\theta}, \theta) = \int_{0}^{\infty} \alpha \log(\hat{\theta}) - \theta d\theta$$

$$= \frac{\alpha (\alpha + t)^{2n+\beta}}{\Gamma(2n+\beta)} \frac{\Gamma(2n+\beta)}{(\alpha + t)^{\alpha + 2 \sum_{i=1}^{n} x_{i}}} \theta^{n+\beta-1} e^{-(\alpha + t) \theta} d\theta$$

Now solving $\frac{\partial R(\hat{\theta}, \theta)}{\partial \theta} = 0$, we obtain the Bayes estimator

$$\hat{\theta}_{GE} = \frac{2n + \beta - 1}{\alpha + t}$$

C. Estimator under LINEX loss function

By using LINEX loss function

$$l(\hat{\theta}, \theta) = \log(\hat{\theta}) - \theta$$

for some constant b the risk function is given by

$$\hat{\gamma}(\theta, \theta) = b \log(\hat{\theta}) - \theta$$

Now solving $\frac{\partial R(\hat{\theta}, \theta)}{\partial \theta} = 0$, we obtain the Bayes estimator

$$\hat{\theta}_{GE} = \frac{1}{b} \left(\frac{b + \alpha + t}{\alpha + t} \right)^{2n+\beta}$$

5. APPLICATION

The data set was originally reported by Badar Priest (1982) on failure stresses (in Gpa) of 65 single carbon fibers of length 50mm respectively. The data set is given as

7.1, 8.12, 1.84, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.0, 19.2, 0.51, 2.052, 0.588, 0.125, 2.162, 2.171, 2.172, 2.182, 194.2, 211.2, 27.2, 27.2, 2.28, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.39, 2.41, 2.43, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601, 2.604, 2.62, 2.633, 2.672, 2.682, 2.699, 2.705, 2.735, 2.785, 3.02, 3.042, 3.116, 3.174.

This data set was used by Al Mutairi (2013) and Uzma et al. (2017).
The posterior estimates and posterior risks are calculated and result is presented in table 1 and table 2.

Table 1: Posterior estimates and Posterior variances using Jeffery's Prior

<table>
<thead>
<tr>
<th></th>
<th>θ^*_{S}</th>
<th>θ^*_{L}</th>
<th>θ^*_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = 0.5</td>
<td>0.223</td>
<td>0.0003</td>
<td>0.0007</td>
</tr>
<tr>
<td>b = 1.0</td>
<td>1</td>
<td>0.0007</td>
<td>0.4427</td>
</tr>
</tbody>
</table>

Table 2: Posterior estimates and Posterior variances using Gamma Prior

<table>
<thead>
<tr>
<th></th>
<th>θ^*_{S}</th>
<th>θ^*_{L}</th>
<th>θ^*_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = 0.5</td>
<td>0.5266</td>
<td>0.0543</td>
<td>0.0574</td>
</tr>
<tr>
<td>b = 1.0</td>
<td>1</td>
<td>0.0574</td>
<td>0.6434</td>
</tr>
</tbody>
</table>

It is clear from Table 1 and Table 2, on comparing the Bayes posterior risk of different loss functions, it is observed that the squared error loss function has less Bayes posterior risk in both non informative and informative priors than other loss functions. According to the decision rule of less Bayes posterior risk we conclude that squared error loss function is more preferable loss function.

CONCLUSION

We have primarily studied the Bayes estimator of the parameter of Ailamujia distribution using Jeffery's prior and gamma prior assuming three different loss functions. The advantage of the study is using wide spectrum of priors to get Bayes estimates of the parameter. From the results we observe that in most cases, Bayes Estimator under Squared error Loss function has the smallest posterior risk values for both prior’s i.e, Jeffery's and gamma prior. In this research, we have obtain the Bayes estimator as

\[
\hat{\theta}_{JE} = \frac{1}{t_{2n-1}} \sum_{i=1}^{n} x_i
\]

Now solving \(\frac{\partial R(\theta, \hat{\theta})}{\partial \theta} = 0 \), we obtain the Bayes estimator under LINEX loss function using LINEX loss function

\[
\hat{\theta}_{JL} = \log \left(\frac{t_{2n}}{b + t_{2n} \hat{\theta}} \right) \tag{9}
\]

REFERENCES