
International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

30

Security Guidance for Critical Areas of Mobile Computing

Hemant G Sarode; Prof. Sonal Bankar
Department of Computer Engineering,

Lokmanya Tilak College Of Engineering, Navi Mumbai, India

Abstract:The radical evolution of computer technology particularly in the Hardware (towards reduced size & weight,
lower power consumption, higher performance at lower price.) and Communications (wireless & satellite networks,
cellular telephony, WAN’s, Internet), has introduced the concept of Mobile Computing. It gives freedom for users
don't have to be tethered on expensive wired workstations in order to exchange data. All they need is mobile
computers that are portable computers communicating via wireless networks.
The benefits of on-the-move network connectivity are obvious but there are several serious networking & system
issues to be solved before the full benefits of mobile computing systems are realized into the practice. Out of these
issues one most important issue is Security. The approach of this document is to discuss the security issues generating
from the today’s technological changes in mobile computing. Truly mobile computing offers many advantages.
Confident access to the Internet anytime, anywhere will help free us from the ties that bind us to our desktops. Having
the Internet available to us as we move will give us the tools to build new computing environments wherever we go.
However, there are still some technical obstacles that must be overcome before mobile networkings can be-come
widespread. The most fundamental is the security management, which is almost an afterthought until the recent years.
Providing security services in the mobile computing environment is challenging because it is more vulnerable for
intrusion and eavesdropping.
Keywords: mobile computing, security; threats; attacks; smartphone.

1. INTRODUCTION:

Mobile Computing is very broad term which can be
used to define any means of using a computer outside
the workplace. This includes working from home or on
the road, at airport or at hotel. This also includes kiosks
used to remotely connect to corporate office, home
computers, laptops, smart phones or tablets. In this
paper we have restricts our scope up to mobile devices
like smart phones & Tablets. It is interaction between
human and computer by which a computer is expected
to be transported during normal usage.
The birth of "mobile computing" has signalled a new
era in the field of computing and information systems.
The concept of mobile computing is derived from the
realization that as computing machinery decrease in
size and increase in computing power users will
demand these machinery to be part of their everyday
life,accompanying them in the carrying-out of their
everyday tasks. Mobile computing is distributed
computing that involves elements whose location
changes in the course of computation. Elements may be
software components such as mobile agents data,
hardware such as palmtops and wireless phones or
users The term mobile computing is very often used for
wireless mobile computing - the use of portable devices
capable of wireless networking.

Wireless mobile computing faces additional constraints
induced by the characteristics of wireless
communications and the demand for portability.
Mobile wireless computing enables access to data at
any time and from any place towards the vision of
ubiquitous or pervasive computing. Although mobile
computing covers a variety of different hardware and
software platforms as well as diverse applications,
many common issues arise. Mobile computing is hu-
man–computer interaction by which a computer is ex-
pected to be transported during normal usage. Mobile
computing involves mobile communication, mobile
hardware, and mobile software. Communication issues
include ad hoc and infrastructure networks as well as
communication properties, protocols, data formats and
concrete technologies. Mobile software deals with the
characteristics and requirements of mobile applications.

2. CHARACTERISTICS-MOBILE COMPUTING:

2.1 Portability:
As the name “Mobile” implies, the device is to be able
to move from one place to another place without
affecting its ongoing functionality. The portability
provides the user to take away its digital devices from
his/her office location & provides easy access of its
working files on the go.

International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

31

2.2 Connectivity:
The ease of being able to connect to the Internet and
receive or transmit data is an essential component to
mobile computing. Connectivity through mobile
carriers over a 3G- or 4G-type network, as well as Wi-
Fi capabilities, are basic requirements for mobile
devices.

2.3 Interactivity:
This could almost go without saying, but like most oth-
er computing technologies, the ability for a mobile de-
vice is critical. The interactivity becomes more signifi-
cant with mobile devices, as they typically have less
computing power than other types of technology.

2.4 Individuality:
Individuality may sometimes be overlooked, but it is a
basic component of the concept of mobile computing.
Mobile devices, including smart phones and tablets, are
designed for individuals and have become a sort of ex-
tension to people in many aspects of their lives. From
this perspective, how individuals interact with mobile
devices remains unique.

3. THREATS TO MOBILE COMPUTING:

Times have changed dramatically since 1946 when the
first mobile telephone call was made. For the first 60
years, there was really only one purpose for a mobile
device to conduct phone calls. This was a relatively
simple process, and for the most part it was secure.
Mobile carriers only had to worry about potential phone
fraud but security was not something that was high
priority for them. Over the past few years, there has
been a wave of new mobile devices that run on 3G or
4G networks. These devices include smart devices, PC
cards/dongles, and netbooks. In many ways, these new
3G or 4G devices are comparable to today’s laptops or
desktops, only a lot more mobile. While mobile devices
are primarily used for voice communications, they are
designed for much more as shown in Figure 1. Today, a
typical smart phone is able to: [7]
• Use 3G technology or Wi-Fi to access the data
network at broadband speeds.
• Access any website in an open environment.
• Access thousands of mobile applications.
• Synchronize emails, contacts, calendars, etc. with
personal and corporate email systems.
• Download and manage digital music, photos,
podcasts, videos, and other multimedia.

Fig1. Mobile devices are evolving into Multifunctional devices

In July 2012, the Cloud Security Alliance and the
Mobile Working Group surveyed 210 security
practitioners from 26 countries. Respondents were
approximately 80% “experts in the field of information
security,” which includes security admins, consultants
and cloud architects.[3] The survey asked users to rank
mobile top threats in order of both their concern and
likelihood of a threat: occurring this year, next year, or
not likely to happen. After considering over 40 different
top threats to the mobile landscape, the top candidates
were dubbed “The Evil 8.”

3.1 The Evil 8: Top Threats to Mobile:
 1. Data Loss from lost, stolen, or decommissioned
devices:
By their nature, mobile devices are with us everywhere
we go. The information accessed through the device
means that theft or loss of a mobile device has
immediate consequences. Additionally, weak password
access, no passwords, and little or no encryption can
lead to data leakage on the devices. Users may also sell
or discard devices without understanding the risk to their
data. [3]
 2. Information stealing mobile malware:
Malware is software that is designed to engage in
malicious behavior on a device. For example, malware
can commonly perform actions without a user’s
knowledge, such as making charges to the user’s phone
bill, sending unsolicited messages to the user’s contact
list, or remotely giving an attacker control over a device.
Malware can also be used to steal personal information
from a mobile device that could result in identity theft or
financial fraud. [14]
Repackaging is a very common tactic, in which a
malware writer takes a legitimate application, modifies
it to include malicious code, then republishes it to the
app market or download site as shown in the below
figure.[15]

International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

32

Fig 2. Process of third party app stores

 3. Data Loss and Data Leakage through poorly
written third-party applications:
Applications for smartphones and tablets have grown
exponentially on iOS and Android. Although the main
marketplaces have security checks, certain data
collection processes are of questionable necessity; all
too often, applications either ask for too much access to
data or simply gather more data than they need or
otherwise advertise. [3]
 4. Vulnerabilities within devices, OS, design, and
third-party applications:
Vulnerabilities that can be exploited for malicious
purposes. Such vulnerabilities can often allow an
attacker to access sensitive information, perform
undesirable actions, stop a service from functioning
correctly, automatically download additional apps, or
otherwise engage in undesirable behavior. Vulnerable
applications are typically fixed by an update from the
developer [2].
 5. Unsecured Wi-Fi, network access, and rogue access
points:
The number of locations that provide Wi-Fi in particular,
free Wi-Fi has exploded over the last few years. This has
increased the attack surface for users who connect to
these networks. In the last year, there has been a
proliferation of attacks on hotel networks, and open
rogue access points installed on public places.
Increased access to public Wi-Fi, along with increased
use of mobile devices, creates a heighlightened
opportunity for abuse of this connection. Firefox’s
Firesheep extension is a perfect example of how one can
gain access to data through public unsecured Wi-Fi.
 6. Unsecured or rogue marketplaces:
Android devices, offers many options for application
downloads and installations. Android users can easily
opt to download and install apps from third-party
marketplaces other than Google’s official “Play Store”
marketplace. The majority of malicious code distributed
for Android has been distributed through third-party app
stores. Most of the malware distributed through third-
party stores has been designed to steal data from the host

device. Tigerbot is downloaded involuntarily to devices
from third-party marketplaces. TigerBot is a bot
designed to gather confidential data from a mobile
device and uses SMS to control the installed bot. In
figure below the TigerBot malware hides from the user
by masking itself as a popular icon, such as Google’s
search app, and a generic application name (ie.
“System”)

Figure 3. Tiger Bot.

 7. Insufficient access to APIs:
Granting users and developers access to a device’s low-
level functions is a double-edged sword, as attackers, in
theory, could also gain access to those functions.
However, a lack of access to system-level functions to
trusted developers could lead to insufficient security[14]
 8. Proximity-based hacking:
Near-field communication (NFC) allows mobile devices
to communicate with other devices through short-range
wireless technology. NFC technology has been used in
payment transactions, social media, coupon delivery,
and contact information sharing.[3] Due to the
information value being transmitted, this is likely to be a
target of attackers in the future.

4. SECURITY SCHEMES IN MOBILE

COMPUTING:

As mentioned in section 3 how the malicious code takes
acces of the mobile device & steels the highly sensible
information from the device. To detect these there are
various repackaging detection algorithms available. All
these algorithms help to identify a repackaged
application on a third party app market. One such
algorithm is the DroidMOSS algorithm[4].
Fig.4 shows an overview of DroidMOSS. DroidMOSS
has three key steps: Feature Extraction, Finger Print
Generation and Similarity scoring. [1]

International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

33

Fig 4. An Overview of DroidMOSS

a) Feature Extraction:

This is the first step where the two main features of each
app, that is, instructions contained in the app and its au-
thor information, are extracted. These two features are
used to uniquely identify each app. Each Android app is
essentially a compressed archive file which contains the
classes.dex file and a META-INF subdirectory. The
classes.dex file contains the actual Dalvik bytecode for
execution while the META-INF subdirectory contains
the author information. Dalvik disassemblers are used to
extract Dalvik bytecode from classes.dex. [10] The code
contains opcodes and operands. Further abstraction is
made by removing the operands and retaining only the
opcode with the believe that it might be easy for repack-
agers to modify or rename the operands, but much hard-
er to change the actual instructions. For the author in-
formation, the META-INF subdirectory contains the full
developer certificate, from which the developer name,
contact and organization information, as well as the pub-
lic key fingerprints are obtained. Each developer certifi-
cate is mapped into one unique 32-bit identifier (author
ID) which is integrated into signature for compari-
son.[10]

b) Fingerprint Generation:

The second step is to generate a fingerprint for each app,
using a specialized hashing technique called fuzzy hash-
ing [4]. Instead of directly processing or comparing the
entire (long) instruction sequences, it first condenses
each sequence into one much shorter fingerprint. The
similarity between two apps is then calculated based on
the shorter fingerprints, not the original sequences. The
instruction sequence is first divided into smaller pieces.
Each piece is considered as an independent unit to con-
tribute to the final fingerprint. However, the challenge
lies on the determination of the boundary of each piece.
In Droid MOSS, a sliding window is used, that starts
from the very beginning of the instruction sequence and
moves forward until its rolling hashing value equals a

pre-selected reset point, which determines the boundary
of the current piece. Specifically, if a reset point is
reached, a new piece should be started. [4] The concrete
process is presented in Algorithm 1. & visually summa-
rized in Figure 5.

Algorithm 1:

Generate the app fingerprint [4]

Input: Instruction sequence iseq of the app

Output: Fingerprint fp

Description: wsize - sliding window size, rp - reset point
value,

sw - content in sliding window, ph - the piece hash

1: set_wsize(wsize)

2: set_resetpoint(rp)

3: init_sliding_window(sw)

4: init_piece_hash(ph)

5: for all byte d from iseq do

6: update_sliding_window(sw, d)

7: rh rolling_hash(sw)

8: update_piece_hash(ph, d)

9: if rh = rp then

10: fp concatenate(fp, ph)

11: init_piece_hash(ph)

12: end if

13: end for

14: return fp

Fig 5. Fuzzy Hashing for Fingerprint Generation

c) Similarity Scoring:

In the third step, divide the apps into two groups, one
from the official Android Market and one from alterna-

International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

34

tive marketplaces, and then calculate pairwise similarity
scores between the two. The similarity is based on the
derived fingerprints. The fuzzy hashing scheme is de-
terministic in that if two apps from two groups are iden-
tical, the same fingerprints will be generated. In addi-
tion, it can also effectively localize the changes possibly
made in repackaged apps.[4]
Based on the above analysis, the similarity between the
(shorter) fingerprints represents how similar their cor-
responding apps are. Similarity scoring algorithm com-
putes the edit distance between these two fingerprints,
which is the number of minimum edit operations, in-
cluding insertion, deletion and substitution of a single
byte, needed to convert one fingerprint into another. The
algorithm Droid MOSS for Similarity Scoring is pre-
sented in Algorithm2. [10]

Algorithm 2:

Calculate the edit distance between two apps

Input: Two fingerprints fp1 and fp2

Output: Edit distance between fp1 and fp2

1: len1 strlen(fp1)

2: len2 strlen(fp2)

3: initialize_two_dimensional_matrix (matrix, len1,
len2)

4: for i = 0 ! len1 do

5: for j = 0 ! len2 do

6: if fp1[i] = fp[j] then

7: cost = 0

8: else

9: cost = 1

10: end if

11: matrix[i, j] = min (matrix [i-1, j]+1, matrix[i, j-1]+1
matrix[i-1, j-1] + cost)

12: end for

13: end for

14: return matrix(len1, len2)

In particular, for two fingerprints fp1 and fp2 (with
lengths of len1 and len2, respectively), reserve a two
dimensional matrix (each value in the matrix is initia-
lized to 0) to hold the edit distance between all prefixes
of the first fingerprint and all prefixes of the second, and
then compute the values in the matrix by flood filling
the matrix. The distance between the two full strings
will be the final value of the edit distance between the
two fingerprints. The edit distance of any prefix subse-
quences of fp1 and fp2 can be derived from the mini-
mum of three values: (1) matrix (i-1, j +1, which means
to add one insertion operation in fp1; (2) matrix (i, j-
1) +1, which means to add one deletion operation in fp2;
and (3) matrix (i-1, j -1) + cost, which means to add one
substitution operation between fp1 and fp2. Based on the
calculated edit distance, we can derive a similarity score
between two fingerprints. The formula used, is as fol-
lows:

similarityScore=[1-distance/ max{len1,len2}]*100

If the calculated similarity score between two apps ex-
ceeds certain threshold and these two apps are signed
with two different developer keys, the system reports the
one not from the official Android Market as repackaged.
The threshold selection affects both false positives and
false negatives of our system. Specifically, a high thre-
shold likely leads to low false positives but also high
false negatives while a low threshold introduces high
false positives but with low false negatives. Hence it is
very important to determine the value of threshold to re-
duce the false positives and false negatives. Experiments
reveal that threshold 70 is a good balance between these
two metrics [10].

5. CONCLUSION:

Security of Mobile Computing is still a nascent field,
with lots to research and a long way to go to achieve
"complete security". The security of mobile computing
presents new grounds for research as some of the prob-
lems faced in the mobile world are non-existent in the
traditional wire-based computing environment. Future
work could address information security related to the
following three sub-areas of the mobile environment:

• The security of information residing in the mo-
bile units, and the correctness and integrity of data in
these mobile units.

• The security of information as it travels "over
the air" between mobile units and mobile support sta-

International Journal of Research in Advent Technology, Vol.4, No.3, March 2016
E-ISSN: 2321-9637

Available online at www.ijrat.org

35

tions. An important consideration in this area is the
power consumption of the algorithms and schemes
that implement this secure data transfer.

• New secure data storage schemes and data or-
ganization techniques will be required to facilitate
rapid searching and transfer of data to and from mo-
bile units.

REFERENCES

[1] Dustin Hurlbut, “Fuzzy Hashing for Digital Forensic
Investigatior”, Technical Report, Access Data Inc.,
May 17, 2011

[2] Sujithra.M, Padmavathi.G, “Mobile Device Security
:A Survey on Mobile Device Threats, Vulnerabilities
and their Defensive Mechanism”, International Jour-
nal of Computer Applications, October 2012

[3] Threats and Security Issues in Mobile Computing
SonikaȦ* and Sangeeta RaniȦ BLS Institute of
Technology Management, Bahadurgarh-
124507,NCR (Haryana), India Accepted 05 Oct
2014, Available online 10 Oct 2014,Vol.4, No.5 (Oct
2014) International Journal of Current Engineering
and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

[4] Wu Zhou, Yajin Zhou, Xuxian Jiang, Peng Ning,
“Detecting Repackaged Smartphone Applications in
Third-Party Android Marketplaces”

[5] Yajin Zhou, Xuxian Jiang, “Dissecting Android
Malware: Characterization and Evolution”, 2012
IEEE Symposium on Security and Privacy.

[6] Forman, G.H. and Zahorian, J. (1994) “The
Challenges of Mobile Computing”. IEEE Computer,
April 1994, 38-47.

[7] Survey on Mobile Computing Security 978-1-4799-
2578-0/13 $31.00 © 2013 IEEE DOI 500
10.1109/EMS.2013.89

[8] Christoph Stach and Bernhard Mitschang, “Privacy
Management for Mobile Platforms – A Review of
Concepts and Approaches”, 2013 IEEE 14th
International Conference on Mobile Data
Management.

[9] Characterizing the Performance of Security
Functions in Mobile Computing Systems
Abdulmonem M. Rashwan, Member, IEEE, Abd-
Elhamid M. Taha, Senior Member, IEEE, and
Hossam S. Hassanein, Senior Member, IEEE

[10] S. Bhargava and D. P. Agrawal, “Security
Enhancements in AODV Protocol for Wireless Ad
Hoc Networks,” Proceedings of IEEE Vehicular
Technology Conference, Atlantic City, 2001, pp.
2143-2147

[11] Heqing Huang, Sencun Zhu, Peng Liu, Dinghao
Wu, “A Framework for Evaluating Mobile App
Repackaging Detection Algorithms”

[12] Mavridis.I, Pangalos.G, “Security Issues in a Mobile
Computing Paradigm”, 2012

[13] Heqing Huang, Sencun Zhu, Peng Liu, Dinghao Wu,
“A Framework for Evaluating Mobile App
Repackaging Detection Algorithms”

[14] Security Guidance for Critical Areas of Mobile
Computing, V1.0 at
http://www.cloudsecurityalliance.org,

15] Lookout Mobile Security, “Lookout Mobile Threat
Report”, August 2011

