Extended Visual Cryptography Scheme for Colour Images with No Pixel Expansion

Samiksha Chaudhary, Dhrumil Shah, Mayuri Sonawane, Mrunal Desai
samiksha.c@somaiya.edu, dharumil.s@somaiya.edu, m.sonawane@somaiya.edu, mdesai@somaiya.edu

Abstract- Visual Cryptography is a special encryption technique to hide information in images, which divide secret image into multiple shares. Each share holds some information when k out of n shares stack together the secret will reveal. However, less than k shares are not work. The advantage of the visual secret sharing scheme is its decryption process i.e. to decrypt the secret using Human Visual System without any computations. Traditional Visual Cryptography suffers from share identification problem. This problem can be solved by extended visual cryptography (EVCS), which adds a meaningful cover image in each share. But most EVCS for general access structures suffer from pixel expansion problem. This paper proposes a general approach to solve above mentioned problems and can be used for color images.

Keywords: Extended visual cryptography, secret sharing scheme and general access structure.

1. INTRODUCTION
Visual Cryptography was introduced by Moni Naor and Adi Shamir at EUROCRYPT 1994[1,2] is a new cryptographic scheme where the cipher text is decoded by the human visual system (eyes). Hence, there is no need to perform any complex cryptographic computation for decryption. The idea is to hide a secret message (text, handwritten text, picture, etc…) in different images called shares or cover images. When the shares (transparencies) are stacked together in order to align the sub pixels, the secret message can be retrieved. The simplest case is the 2 out of 2 scheme where the secret message is hidden in 2 shares, both needed for a successful decryption. W.G. Tzeng and C.M. Hu [3] introduced a new color secret sharing scheme based on Visual Cryptography schemes (VCS) where the traditional stacking operation of sub pixels and rows interrelations is modified. This new technique does not require transparencies stacking and hence, it is more convenient to use in real applications. Visual Cryptography is a special encryption technique to hide information in images in such a way that it can be decrypted by the human vision if the correct key image is used. In secret sharing mechanisms, the secret data is divided into several shares (images) and distributed among participants. Shares are stacked together to recover the data. Visual Cryptography (VC) attempts to recover a secret image via the human visual system by stacking two or more transparencies.
In VC approach [4], the secret image was partitioned into n shadow images (shares), and each participant would receive only one share. Once any k or more shares of a secret are stacked together, the secret image will be visually retrieved without the help of the computer. That is to say that the secret image will be invisible if the number of stacked shares is less than k. This is known as (k, n)-threshold mechanism.

Figure1 describes an example for visual cryptography scheme suggested by Naor [2]. There have been other EVCS schemes proposed, there is no EVCS for color images that supports the general k-out-of-n secret sharing while having no pixel expansion, that is, the pixel expansion rate being equal to one. The above mentioned drawback could be eliminated with the help of k-out-of-n EVCS for color images with-out pixel expansion. A probabilistic technique will help in achieving no pixel expansion. The scheme also allows a user to choose the number of color levels for each primary color (i.e. Red, Green and blue) that the reconstructed image and each share image could have. The reconstructed image refers to the image obtained by imposing k or more share images. The various references used are listed at the end of this paper.

2. BACKGROUND & MOTIVATION
Previously a multipixel encoding method which could recover the graylevel or colored images with better visual quality. Hou used halftone technique and color composition decomposition to simulate the grayscale of an image, thus solved the problem of Naor and Shamir’s method which could only be applied to black and white images. Later Thien and Lin improved Shamir’s theorem by using r pixels of a secret image as the coefficients of a r-1 degree polynomial, and consequently, reduced the share size to 1/r. Based on the conceptions, Chen and Lin also proposed a different progressive secret sharing scheme, using the techniques of reordering the bit-planes and discrete cosine transformation of an
image, respectively. References provided perfect ways to share information and could even obtain the objective of displaying the secret image progressively. Nevertheless, all these schemes needed computer to solve those complicated math in order to decrypt the secret image other than simply using the human eyes. The conventional VC is to produce shares from a secret image and to dispatch them to n participants. We will get the secret information only when k or more shares are stacked together and nothing if less than k shares are obtained, which is the conception of “All-or-Nothing.” A new sharing concept called “progressive VC” came out which can improve the clarity of a secret image step by step by stacking more and more shares. Jin et al. proposed a multi-resolution approach to share secret image that can be applied to VC. They expand pixels to 3×3 block in which eight of them are used to represent the gray value of each pixel and the remaining one is used to store the halftone value of the secret image. In order to take advantage of visual effects, Jin et al. uses a “lookup table” to adjust the pixel value so that pixels with a larger gray value in the secret image own more “1”s (1 represents black) in its eight bit-planes. The adjusted eight binary digits are handled by conventional VC; therefore, an obscure secret image can be directly obtained from stacking shares. By utilizing computer equipment’s to perform the XOR operations on the ninth bit, the halftone secret image can be perfectly reconstructed. However, Jin’s work cannot disclose the secret image progressively. At most, we can say that they proposed a multi-resolution scheme via different approaches to share a secret image. Their method expanded every secret pixel to a 3×3 block, and by using the pixel expansion scheme, their shares will be further expanded to 6×6 times larger, which causes severe waste of storage and transmission time.

3. PROBLEM STATEMENT
Extended visual cryptography visual cryptography scheme for color image without pixel expansion.

4. REVIEW OF LITERATURE
1. Visual Cryptography for General Access Structure by Multipixel encoding with Variable Block Size:
Multi-pixel encoding [3] is an emerging method in visual cryptography for that it can encode more than one pixel for each run. However, in fact its encoding efficiency is still low. This presents a novel multi-pixel encoding which can encode variable number of pixels for each run. The length of encoding alone run is equal to the number of the consecutive same pixels met during scanning the secret image. The proposed scheme can work well for general access structure and chromatic images without pixel expansion. The experimental results also show that it can achieve high efficiency for encoding and good quality for overlapped images.

2. Encrypting Informative Color Image using Color Visual Cryptography:
In this paper [4] Color visual cryptography is implemented in such a way that encryption will require shares and decryption is done with the help of naked human eye i.e. visual cryptography. The decryption is done directly by the human visual system with no special cryptographic calculations. Color visual cryptography uses 2 out of two secret sharing schemes which generate two shares for every input image to be encrypted. The original image is reconstructed by printing the two output shares onto transparencies and superimposing them together. This is XOR operation between the shares to reveal the original information. The algorithm first generates RED, GREEN, BLUE as well as the ALFA components of each pixel of an input image and these three components are used to generate the shares using 2 out of 2 secret sharing scheme. This scheme is useful in many applications like in securing information but not useful for visually blind people.

3. Extended Visual Cryptography Scheme For Color Images With No Pixel Expansion:
An extension of VCS called Extended Visual Cryptography Scheme (EVCS) was also introduced. In an EVCS [5], besides generating n shares for a secret image, these n shares also carry n meaningful and independently chosen images. To generate these shares, a user arbitrarily chooses n meaningful
images which have the same size as the secret image. Then the user splits the secret image and embed the share information into the n meaningful images in such a way that given any k−1 or less shares, no information about the secret image can be obtained, while given any k or more shares, the secret image will be revealed when the shares are superimposed. The scheme is the first EVCS for color images with n pixel expansion. For a color secret image, suppose that n meaningful images have already been chosen. These images are color images chosen arbitrarily and will be used for generating n share images. Also, the choosing processing is totally...
independent as long as the image size is the same as that of the secret image.

Since this scheme does not have any pixel expansion and scheme consists of the following steps:
1. Histogram Generation;
2. Color Quality Determination;
3. Grouping;
4. Share Creation.

5. PROPOSED SYSTEM
The main purpose of this is to avoid pixel expansion which occurred in previous researches, and provide higher security to image using the secret General Access Structure (GAS) solver algorithm which first accept the image from user.

 Step 1: Accept the image from user
 Step 2: Convert into RGB image
 Step 3: Histogram Generation
 Step 4: Color Quality Determination
 Step 5: Grouping
 Step 6: Share Creation
 Step 7: Transmission of share by cover images
 Step 8: Decrypt
 Step 9: Stack both share together
 Step 10: Original image

6. CONCLUSION
Various visual cryptography schemes are studied and their performance is evaluated on four criteria: number of secret images, pixel expansion, image format and type of share generated. It provides a safe and secure transmission as it involves multiple manipulations for encryption and decryption can be done at ease just with the naked eyes. This System provides a friendly environment to deal with color images which is not possible in VCS.

This application is aimed to support .gif and .png (portable network graphics) formatted images and the application would be developed using MATLAB, hence would provide a friendly environment tousers.

REFERENCES