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Numerical Solution of Product Type Fuzzy Volterra
Integral Equation

Qin Chen

Abstract—An iterative algorithm is presented for
approximating the solution of the product type fuzzy
Volterra integral equation. Firstly, the uniqueness of the
solution of the original integral equation is proved by using
Banach fixed point theorem. Next, the error estimation of
the proposed iterative method is achieved. Finally, two
numerical examples are given to illustrate the effectiveness
of the method.

Index Terms—fuzzy Volterra integral equation; product
type; iterative method

I. INTRODUCTION

Integral equations are widely used in different fields, such
as medicine, potential theory, mechanics and natural science
[1-5]. As a special case, product type integral appears in the
study of an infectious disease that does not cause permanent
immunity [6-10].

In 1981, the existence and uniqueness of solutions for the
following product type integral equations were studied by
Gripenberg [9]

h(s) = k (p(s) + j AGs - n)h(n)dn)
0

(a() + [; B(s —mh(mdn), (1)
where h(s) is an unknown function and functions p, q are
related to past infection.

In 1995, a new integral inequality was proposed by

Pachpatte [11] to study the approximation of solutions of Eq.

(1). Later Abdeldaim [12] and Li [13] further enriched the
Pachpatte inequality.

In 2018, Boulfoul [14] studied the following product type
integral equation

1) = ) + 1 (1. [ (o n0)an)
0
£(m. [ v2 (5,1, h())dn), @

where h(s) is an unknown function, f(s, h(s)) is a fuzzy
source function and f;, f, obey linear growth in the second
independent variable.

It is well known that the parameters in the integral
equation are often uncertain in real mathematical modeling.
The concept of fuzzy was proposed and have been
effectively developed.
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In 2021, Mahaloh [15] proposed the uniqueness of the
solution of the following product type fuzzy Fredholm
integral equation

b
h(s) = f(s) @ (FR) f ky (5,1, h(1))dn © (FR)

[, k2 (s,n,h(m)dn, s € [a,b), 3)
where h(s) is an unknown function, f(s) is a fuzzy source
function and (FR) f:* dn denotes the Riemann integrable
function on [a, b].

In this paper, we study the following product type fuzzy
Volterra integral equations

h(s) = g(s) + f B (5,1, () dn
0

fos BZ (S' U'h(n))dﬂ's € [0'1]' (4)
where h(s) is an unknown function and g(s) is a fuzzy
source function.

However, there are few studies on solving Eq.(4). We
regard the set of one-dimensional fuzzy numbers as a closed
convex dimension in a Banach space, and prove the
uniqueness of the solution of Eq.(4) by using Banach fixed
point theorem. The error estimation of the iterative
algorithm is analyzed.

The iteration algorithm of Eq.(4) is proposed by
wo = g(s),

N

S
Wy, = g(S)+f B, (s,n.vm_l)dnf B, (5,1, Vy—1)dn.
0 0
Q)

The structure is as follows: Section 2 introduces some
fuzzy concepts. In Section 3, proves the uniqueness of the
solution of the original integral equation. Section 4 gives the
error analysis of the iterative method. In Section 5, two
numerical examples are given to illustrate the effectiveness
of the proposed method. Finally, a brief summary is made in
Section 6.

Il. PRELIMINARIES

In this section, some basic concepts in fuzzy calculus are
recalled, as given in [16-19].

Definition2.1. [17, 18] F(R) denotes the set of all fuzzy
setson R. Let h € F(R), if h satisfies

(i) his a normal fuzzy set, i.e., there exists s, € R such
that h(sy) =1,

(ii) h is a convex fuzzy set, i.e., h(8s; + (1 — §)s,) =
min{h(s,),h(s,)} forall s;,s, € Rand § € [0,1],

(iif) h is an upper semi-continuous function,
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(iv) The closure of the support of h is compact, i.e., [h]°
is compact,

then h is called as a fuzzy number. The set of all fuzzy
numbers is known as the fuzzy number space, denoted by E.

Definition2.2. [19] Given 0 < r < 1, a fuzzy number h in
parametric form is represented by an ordered function pairs

(h(r),ﬁ(r)) satisfying
(i) h(r) is a bounded left continuous non decreasing
function,

(i) h(r) is a bounded left continuous non increasing
function,

(iii) h(r) < h().
Forh = (h,h),v=(v,v) €Eand § € R, the sum of v +
h and the scalar multiplication 6h can be defined by

(v+h)@® =v(@® +h@), (V+h)@)
=v(r) +h(), Vvrelo1],
and
_((sn,8h),8 =0,
~ |(5h,8h),8 < 0.

Definition2.3. [20]For any two fuzzy numbers w and h,
define D.:E X E - R* U {0}by

Di(v,h) = Sﬁfi]max{l v(®) —h() 1,1 (r) —h(@) 1}.

where v = [v(r), 7(r)], h = [h(r), h(r)]. It has the following
useful propertie.

For vw, h,v, a € E, there are

(i) (E,D,) is a complete metric space,

(ii) D.(w + v,h + v) = D.(w, h),

(iii) D.(w,h) < D.(w,v) + D(v, h),

(iv) D.(aw, ah) =l a || D.(w, h), (see [23]).

() Il w lI= D,(w, D), (see [24]).

(vi) D, (f] w (s)ds, fl h (s)ds) < f] D, (w(s), h(s))ds,

(vii) D.(w#%h,0) =D,(w,0)D,(h,0) with the fuzzy
multiplication % is based on the extension principle that can

be proved by a -cuts of fuzzy numbers w,h € E. Here 0 € E
is defined by (see [25])

B = {1,3 =0,

0, elsewhere.

I11. UNIQUENESS RESULT

The contribution of this section is devoted to the
unigueness of the solution of Eq (4). It can be achieved by
using Banach fixed point theorem based on the following
hypothesis.

(A1) g € Cz([0,1], E).

(A2) There exist ; > 0 and u, > 0 such that

Dr(BI (S, n, h(’l)' 6) < H1, Dr(BZ (Sr n, h(’?)» ()) < Uy

(A3) There are two numbers L; > 0, L, > 0 such that

D,.(B1(s,m,hi(m), By (5’ 1, hy (77)) < LD, (hy, hy),
Dr(BZ (S' n, hl (71), BZ (S' n, h2 (TI)) < LZDT (hll hz),

where 0 < C*:= Ly, + Lopy < 1.

Theorem 1. Assume that (A1)-(A3) hold, then Eq (4)
has an unique solution.

doi: 10.32622/ijrat.112202301

Proof. For Vh,, h, € E. Define the following operator
P: CF([Oll]I E) = CF([Oll]lE)

(PR)(s) = g(s) + f By (s,m, h(n))dn f B, (s,m, h(n))dn.
We can get
D, (P(h1(5)), P(ha(5)))

= D.(9(s) + f By (s,n,hy(n))dn f B, (s,m,hy(n))dn,

g(s) + f By (s,m,h,(m))dn f B, (s,m, hy(1))dn)

IA

Dr(| B (s ha()n [ B, (s, aG)etn,
0 0
f By (s,m,hy(n))dn f B, (s,m,hy())dn)
0 0
+ ([ By (s aG)en [ B, (5.1 haG)e,
So SO
f By (s,m, hy())dn f B, (s,m,hy())dn)
0 0
< | 00 (B (s @), 0)dn [ Dy (Ba(5im. 1)),
0 0
B, (s,m, hy()))dn + f D, (By(s,m,hy(n)),0)dn
0

LSDr (31 (5,1, h:(m)), Bi(s, 1, hy (77))) dn

< (wlz + pzL1)Dr(hy, hy) 1= €Dy (hy, hy).
Shows that P is a contraction map. Eq.(4) has an unique
solution h* by using Banach fixed point theorem. O

IV. ERRORESTIMATION

Let h* and w,, be the exact solution of Eq.(4) and the
approximate solution of Eq.(5).
Theorem 2. Under the conditions (A1)-(A3), then the
following error estimation holds
2
D, (h*(5), Win(s)) <,
Proof. By using Definition 2.3 and the triangle inequality,
there is

D, (h* (5), W (s))
= D, (g(s) + f B, (s,m, h*(m)dn f B, (s,m, h* (),
0 0

C*m

where u = max{u,, u,}.

g(s) + f By (5,1, Wm—1(m))dn f B, (5,1, Wi, (m))dn)

INA

D,( f B, (s, k() f B, (s,m, h*(m)dn,
f B, (s,n,h*(m))dn f B, (5,1, W1 (1))dn)
+ Dy( f B, (s, k() f B, (5,1, W1 (1)) 1,

f By (5,1, Wm—1())dn f B, (5,1, Wim—1(m))dn)

IA

J- DT (BI(S! n, h*(n))! ﬁ)dn f Dr (BZ(S' n, h*(ﬂ)),
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By (8,1, Wnp_a (m)))dn + f D, (B;(s,m,Win—1(1)),0)dn
0

fo SDr (Bl(s,n, h*(m)), B.(s,m, wm_l(n))) dn

< Ly Dr (R, Wi—q) + pLy Dy (Y, Wiy 1)
< C*Dr(h*l Wm—l) (6)
Combining

Dr (h*' Wm—l) < Dr (h*' Wm) + Dr (Wm: Wm—l)'
and Eq.(4.1), there is

. c*
D,.(h*,wp,) < EDr(Wm: Wp_1)-

By using Definition 2.3, we have
Dr(wm(s)' Wm—l(s))

Y]

where

9 = (g61.36.1)

— 7-2 6(2 )
=\|rx 185, Tr)s

and kernels

2-r)?
18

56>,5,r € [0,1],

1
By(s,n,w(n,7) = 3nh(n,7), By (s,n,w(n,7)) = sh(n,7).
The exact solution 1is h(s) = (Q(s, ), h(s, r)) =

(rs, (2 —1)s).
Taking r = 0.4 and n = 5, the error are given in Table
1 and Table 2

Table 1 Left bound of errors (whenr = 0.4,n =5)

IA

Dy (g(s) + fo By (5,1, Wm_1(1))dn fo By (5,7, Wm—1 () )dng Exact  Approximation E,
s 5 0 0 0 0
96 : fo Bilsn W’“‘Z("))djjo B (smwna ) o | 0000602 8.0000e-02  1.3878¢-17
D.( fo B, (5,1 W () d17 jﬂ B, (5,0 Wm_sGD)dn, 0.4 [ 1.6000e-01  1.6000e-01  2.7756e-17
s : 0.6 | 2.4000e-01  2.4000e-01  5.5511e-17
fo By (5,1, Wiy (7)) d7 fo By (5,1, Wi (7)) 0.8|3.2000e-01  3.2000e-01  1.0825e-13
1.0 | 4.0000e-01  4.0000e-01  3.5762e-11

+ Dy( f By (5,1, W1 () j B (5,1, s (1)1,
0 0

fBl (S.n.wm_z(n))dnf B, (5,1, Wi—, (1)) dn)
0 0

Table 2 Right bound of errors (whenr = 0.4,n=5)

IA

| 0 (B (51w 1), 0)dy | Dy By (5w D),
0 0

B, (5,1, Wm—p(m)))dn + f D, (By(s,m Wm—2(1)),0)dn
0

S Exact Approximation Egr
0 0 0 0
0.2 | 3.2000e-01  3.2000e-01 5.5511e-17
0.4 | 6.4000e-01 6.4000e-01 1.1102e-16
0.6 | 9.6000e-01 9.6000e-01 2.5013e-13
0.8 | 1.2800e+00 1.2800e+00 4.4248e-10
1.0 | 1.6000e+00 1.6000e+00 1.4573e-07

S
f Dr (Bl (S' n, Wm—l(rl))' Bl (S, n Wm—Z(n))) dT]
0
< C*Dr(Wm—lem—Z)-
Hence
Dy Wy, Win—1) < C*Dy(Wip—1, Win—2) - < C*™ 1D, (wy, wp).

®)

For wy = g(s), there is

Dr(W1(5),W0(5))
=D, (f B, (s.n.g(n))dnj B, (s,n,g(n))dn,g(s)>
0 0

< f D, (By(s,n,9()),0)dn f D, (B2(s,n,9(m)),0)
0 0

Sty 1= ©)
where u = max{u,, u,}-

From Eqgs.(6)-(9), it is clear that

Dy (h*(5), W (s)) <

*M 2

u
1-C*

V. NUMERICAL EXAMPLES
Example 1 Consider the following product type fuzzy

Example 2 Consider the following product type fuzzy
Volterra integral equation

h(s) = g(s) + J By (s,m,h(n))dn j B, (s,n,h(n))dn,
0 0
where

9 = (g6 561)
_(Tr 2_ﬁ 10 2-r 2_(2_7“)2 10
—<25 8S ' s 8 st%),s,r €[0,1]
and kernels
Bl(s,n,h(n,r)) = 2s%h(n, r),Bz(s, n, h(n, r)) = 3snh(n,r).
The exact solution is h(s) = (Q(s, ), h(s, r)) =

(252,22152). Taking r = 0.5 and n =5, the errors are

shown in Table 3 and Table 4.
Table 3 Left bound of errors (when r = 0.5,n = 5)

Volterra integral equation

Exact Approximation E;

h(s) = g(s) + f By (s,m, h(7)dn f B, (5,1, h(m))dn,

doi: 10.32622/ijrat.112202301
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S Exact Approximation E;

0.2 | 3.0000e-02  3.0000e-02  6.9389%-18
0.4 | 1.2000e-01  1.2000e-01  2.7756e-17
0.6 | 2.7000e-01  2.7000e-01  2.9032e-14
0.8 | 4.8000e-01  4.8000e-01  5.1079e-09
1.0 | 7.5000e-01  7.4994e-01  5.8568e-05

Table 4 Right bound of errors (when r = 0.5,n = 5)

s Exact  Approximation Eg

0 0 0 0
0.2 | 1.0000e-02  1.0000e-02  1.7347e-18
0.4 | 4.0000e-02  4.0000e-02  6.9389%-18
0.6 | 9.0000e-02  9.0000e-02  4.1633e-17
0.8 | 1.6000e-01  1.6000e-01  7.0272e-12
1.0 | 2.5000e-01  2.5000e-01  8.1995e-08

According to the results of numerical examples in Table
1-Table 4, it can be seen that the error between the
approximate solution and the exact solution of the left and
right boundaries of the product type fuzzy Volterra integral
equation solved by the iterative algorithm is very small, and
the effect is ideal. It also shows the applicability and
effectiveness of using the iterative method to solve this kind
of equation.

VI. CONCLUSION

In this paper, we consider the numerical solution of
product type fuzzy Volterra integral equation. The first
result is to prove the uniqueness of the solution of the
original product type fuzzy Volterra integral equation. The
second result is the error estimation of the iterative
algorithm. Numerical results show that the iterative
algorithm is effective. In the following work, we will
consider extending the method to the nonlinear case and
study its numerical solution
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