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Abstract— Direct Speech-to-Speech (S2S) translation 

represents a significant goal in facilitating seamless cross-

lingual communication, aiming to overcome the latency and 

error propagation issues inherent in traditional cascaded 

systems (ASRMT-TTS). However, the development of high-

performing direct S2S models has been critically constrained 

by the scarcity of large-scale parallel S2S corpora. This 

survey details Translatotron 3, a pivotal direct S2S system 

introduced by Google Research in 2023. Translatotron 3 

fundamentally shifts the paradigm by demonstrating, for the 

first time, the feasibility of training a high-quality, end-toend 

S2S model exclusively using readily available monolingual 

data resources: source/target speech and source/target text. 

Leveraging innovative techniques such as unsupervised 

utterance splitting, phoneme-based intermediate 

representations, speech-adapted back-translation, and a non 

auto regressive decoder for rapid inference, Translatotron 3 

achieves strong translation quality and remarkable speaker 

voice preservation without requiring any parallel S2S 

examples. We critically review the technological context, 

dissect the model’s architecture and training methodology, 

analyze its reported performance benchmarks, and discuss its 

profound implications for advancing S2S translation, 

particularly for the vast number of low-resource languages 

previously underserved by data-hungry models. 

 

Index Terms— Direct Speech To Speech Translation, 

Monolingual Translation, Machine Translation, 

Unsupervised Speech To Speech Translation, 

 

I. INTRODUCTION 

Translatotron 3 is situated within the broader context of 

Speech-to-Speech Translation (S2ST) research, building on 

previous efforts while addressing their key limitations. 

Traditionally, the S2ST systems [1,2,3] employed a 

cascade approach, sequentially linking three separate 

components: Automatic Speech Recognition (ASR) to 

transcribe source speech to text, Machine Translation (MT) to 

translate source text to target text, and Text-To-Speech (TTS) 

synthesis to generate target speech from translated text. While 

functional, this pipeline approach often suffers from the  
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propagation of errors from one stage to the next and tends to 

lose the essential para-linguistic and non-linguistic 

characteristics (like emotion, speaking style, pauses, speaker 

identity) present in the original source speech. 

To overcome these limitations and potentially preserve 

more speech nuances, researchers developed direct S2ST 

models. Jia et al. [4] introduced the first end-to-end model, 

“Translatotron”, which directly mapped source speech 

spectrograms to target speech spectrograms. “Translatotron 

2” 

[5] followed as an improvement, offering better performance 

and controllability. However, these pioneering direct models, 

along with subsequent related work exploring different 

techniques such as discrete speech representations [6, 7, 8] or 

two-pass architectures [9], primarily relied on supervised 

learning. This requires large-scale, parallel bilingual speech 

datasets (source speech paired with corresponding target 

language speech), which are expensive and difficult to create, 

especially for low-resource languages. Furthermore, these 

datasets often lack the corresponding para-/non-linguistic 

labels, hindering the explicit transfer of such features. 

Other research lines have explored ways to reduce the 

reliance on fully parallel speech data or leverage different 

types of data. Some approaches use self-supervision 

techniques with untranscribed speech and unpaired text data 

[10], generate pseudolabels from cascaded systems [11], 

combine teacher models with pseudolabeling for unlabeled 

data [9], or jointly pre-train models using monolingual speech 

alongside bilingual text datasets [12]. Another distinct 

approach involves using discrete speech tokens (learned 

representations from models such as SoundStream [13], w2v-

BERT [14], EnCodec [15], Hubert [16]) combined with 

language models (LM) for S2ST or speech-to-text translation. 

Crucially, the development of Translatotron 3 draws 

significant inspiration from the field of Unsupervised 

Machine Translation (UMT) [17, 18]. UMT demonstrated 

that text translation is possible using only large monolingual 

corporain each language, without any parallel sentences. Key 

techniques enabling UMT include back-translation [19] 

(where a model translates target text back to source and uses 

the original target text as pseudoparallel data) and 
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unsupervised cross-lingual embedding mapping [18, 20] 

(learning shared representations for words across languages 

without bilingual dictionaries). Although some work 

explored unsupervised speech-to-text translation [21], 

Translatotron 3 specifically aims to apply these unsupervised 

principles (backtranslation, embedding mapping) directly to 

the end-to-end speech-to-speech translation task, thus 

eliminating the need for parallel speech data. 

 

II. RELATED WORK 

The field of speech-to-speech translation (S2ST) has 

evolved from modular, cascaded systems to fully end-toend 

models. This section details the foundational and recent works 

that led to the development of Translatotron 3. 

 

a) Early Cascaded Systems 

JANUS-III [1] was one of the first multilingual S2ST 

systems, developed in the late 1990s. It used a traditional 

cascade pipeline composed of ASR, MT, and TTS 

components. While a technical achievement for its time, 

JANUS-III suffered from high latency and error 

accumulation between stages. The model was rule-based and 

required languagespecific tuning, limiting its scalability. 

Verbmobil [2], a German-funded project, aimed to 

translate spontaneous speech between German, English, and 

Japanese. It also followed a cascade approach and included 

domain-specific dialogue management. Verbmobil showed 

the feasibility of real-time S2ST but struggled with 

spontaneous speech variability and relied on handcrafted 

rules. 

The ATR Multilingual S2ST System [3] represented a 

more structured approach by combining statis tical 

methods with traditional modules. It emphasized language-

independent architecture and incorporated probabilistic 

models to improve robustness. However, like others in its 

class, it still lacked integration and suffered from component 

dependencies. 

 

b) Direct Speech-to-Speech Models 

Translatotron 1 [4] introduced the first end-to-end 

direct S2ST model. Unlike cascade systems, it bypassed 

intermediate textual representations, instead mapping input 

speech directly to output speech using a sequence-tosequence 

architecture. The model consisted of a speech encoder, a 

decoder that generated a spectrogram, and a vocoder to 

synthesize waveform. While groundbreaking, it 

underperformed in translation accuracy and could not 

preserve speaker characteristics well. 

Translatotron 2 [22] addressed key limitations of its 

predecessor. It introduced: 

A shared attention mechanism to improve alignment between 

input and output. 

Explicit speaker embedding modules to retain speaker 

identity in the output. 

Improved prosody transfer and smoother waveform synthesis. 

Despite its improvements, the model still required parallel 

speech-to-speech data, making it impractical for many low-

resource languages. 

TranSpeech [8] proposed a novel method using bilateral 

perturbation to make the model more robust to noise and 

variability in speech. The bilateral training technique helped 

improve generalization, but like previous models, 

TranSpeech still depended on supervised data. 

Translatotron 3 [29] is a pioneering end-to-end 

unsupervised model for direct speech-to-speech translation 

(S2ST). Break away from the conventional dependency on 

bilingual speech-text corpora and instead learns to translate 

using only monolingual speech-text datasets. This approach 

allows the model to scale better to low-resource languages 

and realworld scenarios where parallel datasets are scarce or 

infeasible to collect. 

Unlike earlier systems that rely on cascaded pipelines of 

ASR (Automatic Speech Recognition), MT (Machine 

Translation), and TTS (Text-to-Speech), Translatotron 3 

enables a fully integrated architecture capable of capturing 

linguistic and nonlinguistic information in a single unified 

model. Importantly, it is designed to preserve paralinguistic 

cues such as speaker identity, speaking rate, intonation, and 

pauses, elements often lost in conventional systems. 

 

c)  S2ST for Unwritten or Low-Resource Languages  

UWSpeech [6] tackled S2ST for unwritten languages 

by leveraging auxiliary modalities like images or semantic 

grounding. This model used unsupervised techniques to 

align concepts across languages, though it often required 

multimodal supervision, such as co-occurring visual 

information. 

Textless Speech-to-Speech Translation [7, 23] 

explored translation without any written text. These models 

used discrete acoustic units (e.g., quantized speech tokens) as 

both input and output representations. This approach 

bypassed the need for text corpora but required accurate unit 

discovery and often failed to capture complex semantics. 

 

d)  Unsupervised Machine Translation (Text and 

Speech) 

Unsupervised Neural Machine Translation (UNMT) 

[18, 17] demonstrated that it is possible to train text-based 

machine translation systems using only monolingual corpora. 

These models relied on: 

Denoising autoencoders to learn language structure. Back-

translation to create pseudo-parallel training data. 

Shared embedding spaces between languages. 

These ideas significantly influenced the training methods 

adopted in Translatotron 3. 
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Chung et al. [23] proposed an unsupervised approach 

for speech-to-text translation. Their method utilized self 

supervised representations and pseudo-labeled text from ASR 

to generate parallel data. Though focused on ST, their back-

translation approach inspired extensions to S2ST. 

CycleGAN [24] proposed unpaired image-to-image 

translation using cycle-consistency loss. This concept of 

enforcing consistency between forward and backward 

transformations is foundational in Translatotron 3’s back-

translation phase. 

 

e) Pretraining and Representation learning 
wav2vec 2.0 [25], HuBERT [16], and W2V-BERT [14] 

enabled high-quality, self-supervised pretraining for speech 

representations. These models achieved state-of-the-art 

performance on downstream ASR and ST tasks by learning 

from raw audio without labels. 

SpeechT5 [26] presented a unified encoder-decoder 

pretraining scheme for various spoken language tasks, 

supporting ASR, TTS, and S2ST via task-specific heads. Its 

generalizability is a strength, but it still requires fine-tuning 

with supervised datasets. 

AudioPaLM [27] extended the capabilities of language 

models by enabling them to “speak and listen.” It trained on 

paired audio-text datasets and supported multi-modal tasks, 

but was extremely data and resource intensive. 

 

f) Multilingual Embeddings and Alignment 

 

MUSE [28] introduced unsupervised alignment of word 

embeddings across languages. It enabled learning of 

crosslingual mappings with no parallel data and became 

instrumental in Translatotron 3, where part of the encoder is 

trained to align with these multilingual word embeddings. 

Masked Autoencoders (MAE) [24] contributed to the 

rise of self-supervised learning by proposing masked 

reconstruction of visual data. Translatotron 3 applies this 

concept to spectrogram inputs, improving generalization and 

robustness. 

 

III. TRANSLATOTRON 3: ARCHITECTURE AND TRAINING 

METHODOLOGY 

  

Translatotron 3 is designed as a fully unsupervised, 

direct speech-to-speech translation model capable of learning 

without parallel bilingual data. The model architecture and 

training process are carefully crafted to enable effective 

crosslingual speech translation while preserving the speaker’s 

identity and prosodic features. This section elaborates on the 

architecture and training objectives used in Translatotron 3. 

 

A. Model Architecture 

The architecture of Translatotron 3 follows a classic 

encoder-decoder paradigm with a shared encoder and two 

distinct decoders one for the source language and another for 

the target language. The encoder is responsible for 

transforming input speech (in the form of spectrograms) into 

a latent representation, which is later processed by the 

appropriate decoder based on the direction of translation. 

SHARED ENCODER 

The encoder (E) architecture is adapted from 

Translatotron 2, and it processes input spectrograms 

regardless of language. Its output is split into two parts: 

 

The first half, Em(Sin), is optimized to match multilingual 

word embeddings from the MUSE framework. 

The second half, Eo(Sin), serves as a free latent representation 

not explicitly aligned to external embeddings. 

By training the encoder to produce language-invariant 

features, the model constructs a shared multilingual latent 

space. 

DUAL DECODERS 

Each decoder consists of three modules: a linguistic 

decoder, an attention mechanism, and an acoustic synthesizer. 

The source decoder (Ds) and target decoder (Dt) are 

functionally similar but operate on different language 

outputs. During inference, the encoder processes the input 

speech, and the relevant decoder generates the translated 

spectrogram output. 

 

B. Training Objectives 

The training of Translatotron 3 is executed in two phases, 

each designed to build the multilingual embedding space and 

ensure translation accuracy. These are: 
 

 
 

Fig. 1: Phase 1 uses the reconstruction loss via the auto-encoding 

path [29] 
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Phase 1: Masked Autoencoding with MUSE Loss 

In the initial phase, the model is trained as a masked auto 

encoder. Input spectrograms are corrupted using 

SpecAugment, and the model is trained to reconstruct them. 

Additionally, the encoder is constrained to produce outputs 

that match pre-trained MUSE word embeddings. 

 
MUSE Loss The MUSE loss aligns the encoder output with 

multilingual word embeddings using the following objective: 

 

𝐿MUSE(𝑆in) =
1

𝑛
∑||𝐸(𝑆in)𝑖

𝑛

𝑖=1

− 𝐸𝑖||2
2                  (1)  1 

 

Here, Sin denotes the input spectrogram (either source or target 

language), and Ei is the MUSE embedding for the i-th word. 

This loss encourages the encoder to produce 

languageinvariant embeddings. 

 
 

Fig. 2: Phase 2 employs the reconstruction loss via back-translation 

[29] 

 
PHASE 2: BACK-TRANSLATION WITH RECONSTRUCTION 

LOSS 

In the second phase, back-translation is introduced to 

simulate translation in an unsupervised setting. The model 

generates a pseudo-translation from a source utterance, re-

encodes it, and reconstructs the original source from it. This 

cycle consistency ensures translation fidelity. 

 

Reconstruction Loss The reconstruction loss ensures that 

the model can regenerate input spectrograms from their latent 

embeddings. It includes three components: 

Spectrogram loss (Lspec): Frame-wise distance between 

predicted and ground-truth spectrograms. 

Duration loss (Ldur): Discrepancy between predicted and 

actual phoneme durations. 

Phoneme loss (Lphn): Cross-entropy loss on predicted vs. true 

phoneme sequences. 

The overall reconstruction loss is: 

 

 Lrecon  =  Lspec  +  Ldur  +  Lphn               (2) 

 
Back-Translation Loss This loss uses the cycle consistency 

framework. The source spectrogram is translated to the target 

and then back to the source, enforcing the original 

spectrogram to be reconstructed accurately: 

 

 
 𝐿back-trans = 𝐿spec(𝑆�̂�, 𝑆𝑠) + 𝐿dur + 𝐿phn        (3)

 

The process is symmetric, and a similar loss is computed for 

target-to-source direction as well. 

 

C. Total Loss Function 

The final loss used for training during each phase is: 

 

 
𝐿recon-phase = 𝐿recon + 𝐿MUSE(𝑆𝑠) + 𝐿MUSE(𝑆𝑡)  (4) 

 

         𝐿BT-phase = 𝐿back-trans + 𝐿recon-phase           (5)  

 
These objectives jointly ensure that the model learns a 

highquality multilingual latent space, effective speech 

reconstruction, and accurate translation without any direct 

supervision. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

Translatotron 3 was evaluated on Spanish-English speech-to-

speech translation tasks. The model was trained using only 

monolingual speech-text datasets, emphasizing its 

unsupervised training capability. The training utilized 64 

TPUv4 devices over one week. 

 

The experiments utilized the following datasets: 

Unpaired Conversational Dataset (UC): A 

synthesized dataset comprising approximately 371 hours 

of English and 350 hours of Spanish speech, created by 

crowd-sourcing humans to read Spanish-English machine 

translation datasets. Both source and target speech were 

synthesized using a Phoneme-and-Grapheme NonAttentive 

Tacotron TTS model and a WaveRNN-based neural 

vocoder. 

Common Voice 11 (CV11): A publicly available corpus 

containing a diverse set of speech recordings in multiple 

languages, including Spanish and English. The dataset was 

used in both its original and synthesized forms to assess the 

model’s performance across different speech styles and 

recording conditions. 
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CoVoST 2 (CVE): A subset of Common Voice 11, used 

for evaluating Spanish-English real speech translation with 

verified translations. 

 

B. Evaluation Metrics 

The primary metrics for assessing translation quality were: 

BLEU (Bilingual Evaluation Understudy): Measures the 

correspondence between machine-generated translations and 

reference translations. 

MOS (Mean Opinion Score): Assesses the naturalness of 

synthesized speech on a scale from 1 to 5. 

CS (Cosine Similarity): Evaluates speaker similarity 

between input and output speech. 

 

C. Results 

 
Table 1: Performance Comparison of Translatotron 3 with Baseline 

Cascade System 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

[29] 

 

Translatotron 3 demonstrated significant improvements over 

the baseline cascade system across all datasets. Notably, on 

the synthesized Unpaired Conversational dataset, it achieved 

an improvement of 18.14 BLEU points over the base-

line [29]. Additionally, the model effectively preserved 

paralinguistic features, including speaker identity and 

prosody, without explicit modeling or supervision, as 

evidenced by higher CS scores. 

 

D. Ablation Study 

An ablation study was conducted to assess the impact of 

various components: 

The study revealed that removing the reconstruction loss 

or back-translation loss significantly degraded performance, 

highlighting their critical roles in the model’s success. 

 

These examples underscore Translatotron 3’s ability to 

generate natural-sounding translations while maintaining 

speaker-specific features. 
 

Table 2: Ablation Study Results on BLEU Scores 

 

Model Variant En-Es BLEU Es-En BLEU 

Full Model 18.85 24.27 

Reconstruction Loss 0.41 2.99 

Back-Translation Loss 1.91 3.62 

MUSE Embedding Loss 5.44 6.22 

SpecAugment 9.23 12.88 

[29]   

 

V. CONCLUSION 

Translatotron 3 marks a significant advancement in the field 

of direct speech-to-speech translation (S2ST) by 

demonstrating that high-quality translation can be achieved 

without the use of parallel bilingual data. Unlike traditional 

cascade systems and earlier direct models such as 

Translatotron 1 and 2, which depended heavily on supervised 

datasets, Translatotron 3 leverages monolingual speech-text 

corpora to learn a multilingual latent space capable of 

producing fluent and expressive speech translations. 

Beyond its impressive results, Translatotron 3 presents a 

paradigm shift in how we approach low-resource and 

underrepresented languages in S2ST. By eliminating the 

dependency on parallel corpora, it makes speech translation 

more inclusive, scalable, and adaptable to languages without 

standardized written forms. 

In conclusion, Translatotron 3 sets a new benchmark in 

unsupervised S2ST research and lays a strong foundation for 

the development of multilingual, expressive, and privacy-

preserving translation systems that are truly end-to-end and 

data-efficient. 
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