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Abstract—In this paper, we will consider the problem of 

optimal control of a fed batch reactor. Our objective is to 

simulate the fed batch reactor under specified conditions in 

order to find an optimal control policy. Thus, for any 

specified initial conditions and parameter values, the optimal 

policy for reactor operation can be obtained from simulation. 

We have an example system of nosiheptide and used the 

gradient method to find the optimal policy. Although the 

convergence is slow, an optimal solution is obtained and 

various plots are prepared that illustrate the applicability of 

the method well. 

 

Index Terms—Fed batch reactor; optimal control; 

Pontryagin's minimum principle; Gradient method. 

 

I. INTRODUCTION 

Batch reactors are commonly used in the chemical industry 

specially to produce food products, fine chemicals, and 

specialty chemical products[1]. The variations during 

operation can cause concern about the quality and yield of the 

final chemical product and hence an optimal policy for the 

control of the operation is necessary[2]. Various measures are 

brought into focus in order to search for causes of variations 

and those termed batch-to-batch variations. The dynamic 

optimization problem points to following a minimum energy 

path to attain optimum results from a batch run[3]. Examples 

are reaching equilibrium point as saturation limit in dissolved 

oxygen level during fed batch bioreactor operation and 

setting progression of reaction temperature that will 

guarantee maximum conversion and yield from catalytic 

reactions. In sum forming an optimal operation policy for 

batch reactor operations is an important consideration while 

scheduling tasks in the batch process industry. 

Now we will present a brief literature review. Reference 

[4], reports work on optimal closed-loop control of a batch 

polymerization reactor. They presented computer optimal 

closed-loop control policies which were derived and applied 

to the simulation of a batch reactor. A multivariable feedback 

controller could track the nominal open-loop optimal state 

trajectories although disturbances in the process were present. 

An analysis based on distributional and worst-case scenarios 

of the open and closed-loop control of batch processes 

concluded that the fundamental feature of batch process 

optimization is that the expected performance is expressed as 

a function of final states[5].  

 

 

 

 

 

Hence the objective function for optimization will contain 

the final product and state variable specification. Stacked 

neural networks have been used to enhance the model 

generalization ability within confidence bounds to predict 

performance from process operational data[6]. It was 

observed from the simulations that neural networks can 

improve process performance from batch to batch even 

though model plant mismatches and unknown disturbances 

were present.  

 Dynamic optimization of fed batch reactor has been 

extensively studied, which often involves finding an optimal 

feed profile that maximizes either the yield of the desired 

products or includes optimization of objective function [7]-

[9]. 

 Since, the operation of a fed-batch reactor is a complex 

process, involving high-value materials or reactants, the 

control and optimization of the processes become an 

important practical issue. Optimal control in such cases is 

generally a multi-objective optimal problem, weighted sum 

approach is also used[7]. 

Now we will present a motivating example. 

II. MOTIVATING EXAMPLE 

We consider the fed-batch reactor model for nosiheptide 

reactor[1]. Nosiheptide is produced as a metabolite by 

microorganisms and is a sulfur-containing peptide 

antibiotic[8],[9]. The model equations are given here. 
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 There are five state variables which are biomass 

concentration (X) in the fermentation broth, substrate 

concentration (S), microbial metabolite (i.e., nosiheptide) 
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concentration (P), volume of media in a bioreactor (V), 

dissolved oxygen level in fermentation broth during 

bioreaction (CO). The substrate is used as nutrients for cell 

growth, metabolite production, and maintaining bacteria 

culture activity. The terms mO and mS represent the 

maintenance coefficient of dissolved oxygen and substrate 

respectively. 

The main objective of this work is to simulate a fed batch 

reactor for the production of nosiheptide and explicitly find 

an optimal control policy. The policy is chosen such that the 

reactor operation tracks four state variables namely, dissolved 

oxygen concentration, biomass concentration, substrate 

consumption, and product concentration by manipulating the 

feed rate(F) over the reactor operation time. This is achieved 

by choosing an objective function and minimizing the 

function as an optimal control problem. The deviation of the 

state variables is weighted along with a penalizing function 

for excessive control moves.  

III. OPTIMAL CONTROL 

We will give a summary of the optimal control theory as 

being applied to the fed batch reactor. The performance index 

or objective function is defined as  
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𝑡𝑓
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)
2

                                                

(6) 

The above objective function is to be minimized using the 

gradient method, so to track saturated dissolved concentration 

in the broth (CO*), maximizing biomass concentration and 

consumption of substrate, along with tracking an arbitrary set 

point of product concentration to maximize product 

formation and introducing a penalizing function for 

controlling excessive control moves.  

The Hamiltonian for the optimal control problem is 

obtained using (1)-(6), resulting in  
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where 𝑓𝑖 , 𝑖 = 1,2, … ,5 𝑎𝑟𝑒 𝑟ℎ𝑠 𝑜𝑓    (1) − (5).   𝐴𝑛𝑑    𝜆𝑖 , 𝑖 = 1,2, … ,5  
𝑎𝑟𝑒 𝑐𝑜𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

Applying Pontryagin’s minimum principle to (7), we 

obtain 
𝜕𝐻
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Here, 𝑧 ≡ {𝑋, 𝑆, 𝑃, 𝑉, 𝐶𝑂}, where z is a state vector. First, 

we obtain u* by solving for (8) and later see that (9) form 

costate differential equations. 

IV. NUMERICAL COMPUTATIONS 

The gradient method is explained here. First, we assume a 

starting value for 𝑢[𝑡],  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 . Integrate system 

dynamics to find out state vector as a time history. In a 

symbolic manipulator, the solution is expressed as an 

interpolating polynomial. These are needed to integrate 

costate equations. Now, integrate costate or adjoint equations 

to find out  𝜆𝑖 , 𝑖 = 1,2, … ,5in the backward direction. The 𝑢[𝑡] 
is updated using a relation as  

Δ𝑢[𝑡] = −𝑊[𝑡]−1 (
𝜕𝐿

𝜕𝑢
+ 𝜆𝑇 𝜕𝑓

𝜕𝑢
)                                       

(10) 

where W[t] is a weighing matrix, the L is the 

Lagrangian[10],[11]. And 𝑓 = {𝑓1, . . , 𝑓5} . Now, continue 

with the iterative procedure until H[u[t]] goes to zero. It is 

observed that the stability is improved and convergence is 

slow to terminate the run.  

 We use the same parameter values as given in the system 

of nosiheptide for the simulation experiment[1]. However, 

our initial conditions differ; these are given as, 𝑋[0] =
0.05, 𝑆[0] = 12.0, 𝑃[0] = 0.0, 𝑉[0] = 60.0, 𝐶𝑂[0] = 0.037. 

 

V. RESULTS AND DISCUSSION 

Upon execution of the above procedure, and solving the 

optimization problem by gradient method, we obtain a profile 

of 𝑢[𝑡] versus t that gives an optimal feed policy. Moreover, 

for understanding the system and the effect of various 

parameters on the optimal control policy, a parametric study 

has been carried out. The result section is divided into two 

parts. In the first part, we vary two parameters, initial biomass 

concentration, and Pf, which is an arbitrary point used for 

maximizing product concentration, and their effect on 

optimal feed control is studied. In the second part, we 

consider various combinations of terms in the objective 

function and their respective weightage and compute the 

optimal control profiles. These are seen to reveal interesting 

results that are discussed. 
 

TABLE I: First Experiment. Comparison of options for optimal control 

policy 

Case Xa α η 𝜸 𝝐 𝜻 

1 0.005 0 0.4 0.00085 0.00093 0 

2 0.1 2.4 0 0.00085 0.00093 0.0082 

3 0.2 2.4 0.4 0 0.00093 0 

4 0.4 2.4 0.4 0.00085 0 0.00082 

5 0.7 2.4 0.4 0.0085 0.00093 0 

  

In the first numerical experiment performed, we have 

varied the values of initial biomass concentration and Pf as 

mentioned in Table I. A gradient method is used to solve the 

optimal control problem keeping the other parameters 

constant for all runs. Fig. 1 represents the optimal control feed 

policy obtained for the three cases. There is a decrease 

observed in the feed rate at a very early stage, pointing to the 

fact that there is an initial charge of biomass in the reactor. It 

is observed that more substrate is added as control action 

required when initial biomass concentration is increased. 
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Fig.1: First Numerical Experiment. Feed rate control 

 
Fig.2: First Numerical Experiment. Biomass growth 

 Fig. 2 depicts the biomass concentration with respect to 

batch operation time. With the increase in time, biomass 

growth occurs due to the consumption of substrate to produce 

the product. The significant observation is that when a higher 

initial concentration of biomass is used, the death rates come 

into force much more significantly than for lower biomass 

concentrations. This explains the decrease in biomass 

concentrations during the operation time. 

The substrate concentrations for all three cases are shown 

in Fig. 3. It is obvious that the substrate concentration with 

time will decrease as the biomass formed consumes the 

substrate to form the product. The substrate action considers 

three terms that emphasize providing nutrients or cell growth, 

producing metabolites, and maintaining culture activity as 

expressed in (3). The substrate concentration falls more 

rapidly for case 3 with a higher initial biomass concentration. 

Similarly, the rate of substrate consumption reduces with an 

increase in initial biomass concentration. 

 

 
Figure 3: First numerical experiment. Substrate consumption 

The product concentration is shown in Fig. 4. Here it is 

observed that the product concentration stabilizes rapidly for 

case 3 when compared with the other cases. For case 1 due to 

low initial biomass concentration, the bioreaction takes a 

slower path for the product formation. Here, we need to note 

that, the Pf term is not the setpoint to achieve, but is arbitrarily 

assumed for maximizing the product concentration. It is 

observed that, even though we change the values of Pf, there 

is no significant change in the result of the product 

concentration. 

 
Figure 4: First numerical experiment. Product formed 

 A higher initial biomass loading is observed to have higher 

rates of information of product; however, it requires higher 

control of feed rate as is evident from Fig. 1. The case with 

low initial biomass concentration may be slow, but requires 

less control over the optimal control feed policy. 

 The objective function plays a vital role in determining the 

optimal control policy. The objective function in this work 

comprises weighted deviations, to track the values required. 

The change in weights can be decisive in opting for a control 

policy with different objectives[12]. Thus, various 

combinations of objective function terms and respective 

penalizing or weighted constants are taken into consideration. 

Along with these, the initial biomass concentration is also 

varied. The values of the parameters of the objective function 

and the initial biomass concentration are given in Table II. 

 

 

TABLE II: Second experiment. Comparison of options for the objective function 

Case to tf α η 𝛾 𝜖 𝜁 sf Vi Xo Pf 

1 0 24 0.4 0.4 0.00005 0.00003 0.00002 14 60 0.05 7.5 

2 0 24 0.4 0.4 0.00005 0.00003 0.00002 14 60 0.1 10 

3 0 24 0.4 0.4 0.00005 0.00003 0.00002 14 60 0.2 12 
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Figure 5: Second numerical experiment. Feed rate control 

 The cases given in Table 1 were simulated to get an idea of 

the optimal control feed policy for different variations in the 

objective function. This is the second numerical experiment. 

Fig. 5 represents the feed policy for these five cases. For case 

1 we observe that no excessive control moves are necessary 

and bioreaction does not track the product concentration. It is 

observed that the feed rate is increased in the first few hours 

and then remains roughly constant to achieve the objectives 

set by the objective function. In case 2 we see that the 

objective function considers all the terms except tracking 

dissolved oxygen concentration. We see a rise in the feed rate 

a linear decrease throughout and an increase in the ending 

period. 

 
Figure 6: Second numerical experiment. Biomass growth 

 
Figure 7: Second numerical experiment. Substrate 

consumption 

 
Figure 8: Second numerical experiment. Product formed 

 Cases 3,4 and 5 show a similar control policy behavior but 

with differences in values. A higher concentration of biomass 

brings more death rates to the system thereby forcing the 

objective function to lower the feed rate so as to maintain the 

product concentration. This is then followed by a steady rise 

in the feed rate with a rapid increase in the late period along 

the batch operation time. Figs. 6, 7, and 8 represent the 

biomass concentrations, substrate consumption, and product 

formation respectively. When these cases are studied for 

substrate consumption, product formation, and biomass 

concentration in the fed-batch bioreactor during the batch 

operation time, the results are quite similar to the analysis 

done in the first part. All these follow similar trends as these 

parameters depend largely on initial biomass concentration. 

 

VI. CONCLUSION 

We have successfully done the simulation of a fed batch 

bioreactor by applying Pontryagin's minimum principle. A 

gradient method was used to devise the numerical simulation. 

The optimal feed policy was the result of a simulation 

experiment. 

A parametric study done in this paper resulted in this work 

giving an insight into how these parameters affect the 

performance of the system. Future work in this domain can 

include, using different approaches to solve the optimal 

control problem or optimization for a fed-batch reaction.  
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